Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
نویسندگان
چکیده
Although describing very different physical systems, both the Klein–Gordon equation for tachyons (m2<0) and Helmholtz share a remarkable property: unitary irreducible representation of corresponding invariance group on suitable subspace solutions is only achieved if non-local scalar product defined. Then, subset oscillatory supports unirrep Euclidean group, with m2<0 tachyonic Poincaré group. As consequence, these systems also similar structures, such as certain singularized projectors spaces, but they must be treated carefully in each case. We analyze differences analogies, compare equations conventional m2>0 equation, provide unified framework products three equations.
منابع مشابه
Cubic spline Numerov type approach for solution of Helmholtz equation
We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...
متن کاملExact nonparaxial beams of the scalar Helmholtz equation.
It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the conn...
متن کاملAn Invariant Shape Representation Using the Anisotropic Helmholtz Equation
Analyzing geometry of sulcal curves on the human cortical surface requires a shape representation invariant to Euclidean motion. We present a novel shape representation that characterizes the shape of a curve in terms of a coordinate system based on the eigensystem of the anisotropic Helmholtz equation. This representation has many desirable properties: stability, uniqueness and invariance to s...
متن کاملFast integral equation methods for the modified Helmholtz equation
Talk Abstract We present an efficient integral equation method approach to solve the forced heat equation, ut(x) − ∆u(x) = F (x, u, t), in a two dimensional, multiply connected domain, with Dirichlet boundary conditions. We first discretize in time, which is known as Rothe’s method, resulting in a non-homogeneous modified Helmholtz equation that is solved at each time step. We formulate the sol...
متن کاملUperieure S Ormale N Ecole Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation
We derive uniform weighted L 2 and Morrey-Campanato type estimates for Helmholtz Equations in a medium with a variable index which is not necessarily constant at innnity. Our technique is based on a multiplier method with appropriate weights which generalize those of Morawetz for the wave equation. We also extend our method to the wave equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2021
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym13071302